Solubility and Density Isotherms for Potash Alum–Water–Acetone

Jerzy Mydiarz[†] and Alan G. Jones*

Department of Chemical and Biochemical Engineering, University College London, Torrington Place, London WC1 7JE, England

Drowning-out precipitation provides a potentially attractive process for the production of inorganic salts. In this study the solubility of potash alum (potassium aluminum sulfate) in water and in aqueous acetone has been determined over the temperature range 15-35 °C, and the densities of the resulting saturated solutions have been measured. In all cases, the presence of acetone significantly reduces both the solubility and density of potash alum in aqueous solution. The solubility data may conveniently be expressed by a relationship of the form In $(w_{eq}) = A + Bx + Cx^2$ with an accuracy $\pm 2\%$, where w_{eq} is the equilibrium saturation concentration of potash alum, expressed as kilograms of potash alum (hydrate) per kilogram of water, and x is the concentration of acetone expressed as kilograms of acetone per kilogram of water.

Introduction

Drowning-out precipitation of soluble inorganic salts from aqueous solution by the addition of an organic second solvent has a number of advantages over simple cooling. These generally lie in the possibility of carrying out the operation at ambient temperature and obtaining crystals of high purity. The technique is attracting the increasing attention of technologists in chemical and pharmaceutical industries (1-8).

Recent complementary investigations of the continuous drowning-out precipitation of potassium sulfate (9) and potash alum (10) have clearly shown that it is possible to retrieve a crystal product which is close to that obtained by cooling crystallization.

Various indirect methods of potash alum concentration measurements were investigated by Garside (11). The results of his work demonstrate that neither refractive index nor viscosity measurements could conveniently be made with sufficient accuracy but the measurements of electrical conductivity and solution density both appeared to be potentially promising; electrical conductivity, however, is very sensitive to changes in temperature.

The solubility of potash alum in aqueous alcohols (methanol, ethanol, and 2-propanol) was recently reported by Mullin and Šipek (12). The aim of the present work was to provide accurate solubility and density data for solutions of potash alum in water and aqueous acetone mixtures as an aid toward the assessment of the potential of drowning-out precipitation using organic substance as a separation technique.

Experimental Section

The solubility of potash alum in water-acetone was measured via its density measurements over the temperatures 15-35 °C. Under- and oversaturated solutions were prepared as follows. Volumetric quantities of twice-distilled water and acetone were charged to the glass flask closed by a ground glass stopper and fitted with a magnetic stirrer. Then an exactly

Figure 1. Density of potash alum-water and potash alum-aqueous acetone solution at 25 °C.

Figure 2. Solubility of potash alum in aqueous acetone at 15, 25, and 35 °C.

known mass of analar grade potash alum was added to the water-acetone solution, and after dissolution of the solute, samples of clear solution were withdrawn and the sample density was measured.

[†] Permanent address: Institute of Chemical Engineering and Heating Equipment, Technical University of Wroclaw, ul. Norwida 4/6, Wroclaw, Poland. * Author to whom correspondence should be addressed.

Table I. Density of Under- and Supersaturated Potash Alum-Water and Potash Alum-Water-Acetone Solutions at 15, 25, and 35 °C (kg m⁻³)

					l	9 = 15 °C						
acetone concn, kg of acetone/	solute concn, kg of hydrate/100 kg of H ₂ O											
kg of H ₂ O	1	2	3	4	5	6	7	8	9	10	12	14
0 0.02 0.05 0.10 0.15 0.20 0.20	992.191 987.196 982.695 973.956	996.774 991.535 986.689 977.741	1007.298 1001.243 995.779 990.726	1019.298 1016.146 1011.932 1005.662	1016.538	1028.889 1025.569 1021.030	1030.116 1025.342	1038.197 5 1034.639 2 1029.779) 1039.101)	1047.201 1043.481	l 1055.93 l	7 1064.544
0.80	010.000	511.141	001.000			9 - 25 °C						
acetone concr						, <u>- 20 C</u>			·			
kg of acetone	/				solute co	ncn, kg of	hydrate/1	100 kg of H	I ₂ O			
kg of H ₂ O	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5
0.05 0.10 0.15 0.20 0.30	978.11 968.29	7 980.194 9 970.153	987.48 981.11 971.99	5 989.636 1 984.143 5 973.857	997.775 991.692 986.107	988.064	1002.143 995.906	997.955	1006.423	1008.580	1017.968 1010.658	1012.719
acetone conc	en,				solute c	oncn, kg of	hydrate/	100 kg of H	H₂O		,	
kg of aceton kg of H ₂ O	e/	7	8	9	10	11	12		3	14	16	18
0 0.02 0.05	1017	10 7.968 10	35.029 26.700	1036.202 1031.052	1043.916 1040.637 1035.286	1044.90 1039.41	1052.6 9 1049.1 3	324 118 1053	106 .317 105	31.572 10 57.545	069.831	1077.853
					e	9 = 35 °C						
acetone concn, kg of acetone/	solute concn, kg of hydrate/100 kg of H ₂ O											
kg of H ₂ O	1	2	3	4	6	8	10	12	14	16	18	20
0 0.02 0.05 0.10 0.15 0.20 0.30	978.760 972.908 962.486	982.918 976.876 966.088	980.985 969.654	998.046 991.089 984.809	1014.221 1006.470 999.120	1028.252 1022.921 1014.503	1040.863 1036.858 1031.473 1022.657	1049.483 1045.227 1039.346	1057.730 1053.619 1047.304	1065.935 1061.597	1073.910	6 1081.729

Table II.	Solubility and	Density of Potash	Alum-Aqueous
Acetone N	feasured at 15.	25. and 35 °C	

concn of	solubility of	_							
acetone,	potash alum,	density of							
kg of acetone/	kg of hydrate/	satd soln,							
kg of H ₂ O	100 kg of H_2O	kg/m^3							
	15 °C								
0	9.66	1045.669							
0.02	7.78	1033.637							
0.05	5.70	1019.667							
0.10	3.55	1003.681							
0.15	2.31	992.822							
0.20	1.54	984.865							
0.30	0.76	973.153							
	25 °C								
0	13.72	1060.712							
0.02	11.45	1045.616							
0.05	8.29	1028.045							
0.10	5.35	1007.556							
0.15	3.51	993.849							
0.20	2.39	983.712							
0.30	1.25	969.223							
	35 °C								
0	19.83	1081.075							
0.02	16.31	1062.832							
0.05	12.41	1041.055							
0.10	7.99	1014.522							
0.15	5.38	997.026							
0.20	3.72	983.734							
0.30	2.00	966.079							

Table III. Coefficients of the Model Equation (1)

	с	oeff of model eq	1
<i>θ</i> , °C	A	В	С
15	2.2609	-10.5980	7.1408
25	2.6243	-10.2610	7.5144
35	2.9868	-9.7789	7.1105

Saturated solutions of potash alum aqueous and aqueous acetone solutions were made by approaching equilibrium from undersaturated states (12). The apparatus used is described in detail elsewhere (12). Briefly, it consists of a 150-mL glass vessel closed by a ground glass stopper and is fitted with a magnetic stirrer. The cell is immersed in a thermostatic water bath controlled to ± 0.05 °C. The procedure is as follows. Volumetric quantities of twice-distilled water and analar grade acetone are charged to the solubility cell. Then the mass (in excess of saturation) of analar grade potash alum is added to the solubility cell and agitated for a minimum of 1 h at a temperature at least 2 °C lower than the saturation temperature. The contents of the solubility cell are then agitated for at least 10 h at constant temperature. At the end of this time, the agitator is switched off, and 1 h later samples of clear solution are withdrawn and their density is measured.

The solvents used were analytical grade (BDH Chemical Ltd.) acetone with a minimum assay of 99.5% and twice-distilled water. The solute used was analar grade aluminum potassium sulfate (potash alum; BDH Chemical Ltd.).

Table IV. Solubility and Density of Potash Alum Aqueous Solution at 15, 25, and 35 °C

	solubility, kg of hydrate/100 kg of water						density, kg/m ³				
<i>θ</i> , °C	this study	ref 12	ref 11	ref 14	ref 15	ref 18	this study	ref 12	ref 11	ref 15	ref 18
15	9.66	9.545	9.62	9.51		9.101	1045.669	1045.2	1047.0		1045.8
25	13.72	13.70 9	13.76	13.43	13.64	13.113	1060.712	1060.0	1062.0	1058.6	1061.5
35	19.83	19.765		19.44	19.19		1081.075	1080.3		1080.8	

The densities of the various solutions were subsequently determined by using a digital density meter (PAAR DMA 60) which gives a claimed precision up to 10⁻⁷ g cm⁻³. The densities of potash alum-water solutions and potash alum-wateracetone mixtures at 15, 25, and 35 °C are shown in Table I. The densities at 25 °C are also presented in Figure 1. It is apparent from Figure 1 and Table I that densities of potash alum-water and potash alum-water-acetone solutions are practically proportional to the concentration of solute. At each concentration of acetone in solution the density data of underand oversaturated solutions were correlated with concentration by an polynomial equation (not shown) and the solubility calculated.

Potash alum solubility data in water and in aqueous acetone mixtures are presented in Table II and in Figure 2. In all cases, the solubility of potash alum is significantly reduced by the presence of acetone. The experimental solubility data are well correlated by an expression of the form

$$\ln(w_{eo}) = A + Bx + Cx^2$$
 (1)

where w_{eq} is the equilibrium concentration of potash alum (kg of hydrate/100 kg of water), x is the prevailing concentration of acetone in solution (kg of acetone/kg of water), and A, B, and C are coefficients. Values of A, B, and C determined are also presented in Table III.

For the purpose of comparison, both the solubility and density data of potash alum in pure aqueous solutions obtained in this work are presented in Table IV together with those data available in literature (11, 12, 14-18). The solubility data of potash alum in pure aqueous solutions obtained in the present study are intermediate between those of Mullin and Šipek (12) and of Garside (11), with higher values than those reported by Broul et al. (14), Schlein et al. (15), Berkeley (16), International Critical Tables (17), and Solubility of Inorganic and Organic Compounds (18). A more significant difference is observed in the case of density. The latter is likely to be due to using a more accurate instrument here than in previous work.

Glossary

A, B, C coefficients (eg 1)

potash alum concentration, kg of hydrate/kg of free w water

w_{eq} w solubility, kg of hydrate/100 kg of free water

- acetone concentration, kg of acetone/100 kg of x water
- density of solution, kg/m³ ρ

temperature, °C

Registry No. Potassium aluminum sulfate, 10043-67-1; acetone, 67-64-1.

Literature Cited

- (1) Budz, J.; Mydiarz, J.; Mozolowski, F. Przem, Chem, 1985, 64/10. 489.
- (2)Harano, Y.; Nakano, K.; Saito, M.; Imoto, T. J. Chem. Eng. Jpn.
- (3)
- Harano, Y., Kakano, K., Salio, M., Inicio, Y. J. Chem. Eng. spin.
 1976, 9, 373.
 Hoppe, H. Chem. Proc. Eng. 1968, 49, 61.
 Lozano, J. A. F. Ind. Eng. Chem. Process Des. Dev. 1978, 15, 445.
 Karpinski, P. H.; Budz, J.; Mydlarz, J. Presented at the International (5) Symposium-Workshop on Particulate and Multi-Phase Processes and 16th Annual Meeting of the Fine Particle Society, Miami Beach, FL, 1985.
- (6) Budz, J.; Karpinski, P. H.; Mydlarz, J.; Nyvlt, J. Ind. Eng. Chem. Prod. Res. Dev. 1966, 25, 657
- (7)Mydlarz, J.; Budz, J. Zesz. Nauk. Politech. Poznańskiej 1986, No. 18, 323.
- (8) Mydlarz, J.; Budz, J. Presented at the AIChE Annual Meeting, New York, 1987
- (9)Jones, A. G.; Mydlarz, J. Chem. Eng. Res. Des., in press.
- (10) Jones, A. G.; Mydlarz, J. Can. J. Chem. Eng., in press
- Garside, J. Ph.D. Dissertation, University of London, 1966. Mullin, J. W.; Šipek, M. J. Chem. Eng. Data 1981, 26, 164 (11)(12)
- (13) Mydlarz, J.; Jones, A. G.; Millan, A. J. Chem. Eng. Data 1989, 34, 124.
- (14) Broul, M.; Nyvit, J.; Söhnel, O. Solubility in Inorganic Two-Component Systems; Academia: Prague; Elsevier: Amsterdam, 1981; p 89. Schlein, D.; Prater, J. D.; Ravitz, S. F. Ind. Eng. Chem. 1944, 39, 74.
- (16)Earl of Berkeley Philos. Trans. 1904, 203A, 195.
- (17) International Critical Tables, 242; McGraw-Hill: New York, 1928; Vol. IV. p 163.
- (18) Solubility of Inorganic and Organic Compounds. Part I. Binary Systems; Stephen, H., Stephen, T., Eds.; Pergamon: Oxford-London-New York-Paris, 1963; Vol. I, p 163.

Received for review October 18, 1988. Accepted April 20, 1989.